Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.

نویسندگان

  • P H Chavanis
  • L Delfini
چکیده

We study random transitions between two metastable states that appear below a critical temperature in a one-dimensional self-gravitating Brownian gas with a modified Poisson equation experiencing a second order phase transition from a homogeneous phase to an inhomogeneous phase [P. H. Chavanis and L. Delfini, Phys. Rev. E 81, 051103 (2010)]. We numerically solve the N-body Langevin equations and the stochastic Smoluchowski-Poisson system, which takes fluctuations (finite N effects) into account. The system switches back and forth between the two metastable states (bistability) and the particles accumulate successively at the center or at the boundary of the domain. We explicitly show that these random transitions exhibit the phenomenology of the ordinary Kramers problem for a Brownian particle in a double-well potential. The distribution of the residence time is Poissonian and the average lifetime of a metastable state is given by the Arrhenius law; i.e., it is proportional to the exponential of the barrier of free energy ΔF divided by the energy of thermal excitation kBT. Since the free energy is proportional to the number of particles N for a system with long-range interactions, the lifetime of metastable states scales as eN and is considerable for N≫1. As a result, in many applications, metastable states of systems with long-range interactions can be considered as stable states. However, for moderate values of N, or close to a critical point, the lifetime of the metastable states is reduced since the barrier of free energy decreases. In that case, the fluctuations become important and the mean field approximation is no more valid. This is the situation considered in this paper. By an appropriate change of notations, our results also apply to bacterial populations experiencing chemotaxis in biology. Their dynamics can be described by a stochastic Keller-Segel model that takes fluctuations into account and goes beyond the usual mean field approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical dynamics of self-gravitating Langevin particles and bacterial populations.

We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [P. H. Chavanis and C. Sire, Phys. Rev. E 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to poly...

متن کامل

Generalized Keller-Segel models of chemotaxis. Analogy with nonlinear mean field Fokker-Planck equations

We consider a generalized class of Keller-Segel models describing the chemo-taxis of biological populations (bacteria, amoebae, endothelial cells, social insects ,...). We show the analogy with nonlinear mean field Fokker-Planck equations and generalized thermodynamics. As an illustration, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion pri...

متن کامل

Medium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model

Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...

متن کامل

Stochastic Facilities location Model by Using Stochastic Programming

Finding the location for plans like factories or warehousesfor any organization is an important and strategic decision. Costs oftransportation which are the main part of the price of the goods, is thefunction of the location of these projects. to find the optimum locationof these projects, there have been various methods proposed which areusually defined (not random). In reality and in dealing ...

متن کامل

Stochastic homogenization of the Keller-Segel chemotaxis system

Abstract In this paper, we focus on the one-dimensional Keller-Segel chemotaxis system in a random heterogeneous domain. We assume that the corresponding diffusion and chemotaxis coefficients are given by stationary ergodic processes, and apply methods pertaining to stochastic two-scale convergence to derive the homogenized macroscopic equations. Special attention is paid to developing efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2014